题目内容

【题目】对于三次函数f(x)=ax3bx2cxd(a0),给出定义f(x)是函数yf(x)的导数f(x)f(x)的导数若方程f(x)=0有实数解x0则称点(x0f(x0))为函数yf(x)的“拐点”.某同学经过探究发现任何一个三次函数都有对称中心且“拐点”就是对称中心请你根据这一发现判断函数的对称中心为(  )

A. (,1) B. (-,1) C. (,-1) D. (-,-1)

【答案】A

【解析】依题意,得f′(x)=x2x+3,f″(x)=2x-1,

f″(x)=0,即2x-1=0,得x

f()=1,∴函数f(x)=x3x2+3x的对称中心为(,1).

故选A.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网