题目内容

【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了11月1日至11月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如表资料:

日期

11月1日

11月2日

11月3日

11月4日

11月5日

温差x(℃)

8

11

12

13

10

发芽数y(颗)

16

25

26

30

23

设农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(注:
(1)求选取的2组数据恰好是不相邻2天数据的概率;
(2)若选取的是11月1日与11月5日的两组数据,请根据11月2日至11月4日的数据,求出y关于x的线性回归方程
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?

【答案】
(1)解:设抽到不相邻两组数据为事件A,因为从5组数据中选取组数据共有10种情况,每种情况都是等可能出现的,其中抽到相邻两组数据的情况有4种,

所以P(A)=1﹣0.4=0.6.

故选取的组数据恰好是不相邻天数据的概率是0.6


(2)解:由数据,求得 = (11+13+12)=12, = (25+30+26)=27,

由公式求得 = = = =﹣3.

所以关于x的线性回归方程为y= x﹣3


(3)解:当x=10时,y= x﹣3=22,|22﹣23|<2,

同样,当x=8时,y= x﹣3=17,|17﹣16|<2.

所以,该研究所得到的线性回归方程是可靠的


【解析】(1)根据题意列举出从5组数据中选取2组数据共有10种情况,每种情况都是可能出现的,满足条件的事件包括的基本事件有4种.根据等可能事件的概率做出结果.(2)根据所给的数据,先做出x,y的平均数,即做出本组数据的样本中心点,根据最小二乘法求出线性回归方程的系数,写出线性回归方程.(3)根据估计数据与所选出的检验数据的误差均不超过2颗,就认为得到的线性回归方程是可靠的,根据求得的结果和所给的数据进行比较,得到所求的方程是可靠的.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网