题目内容

【题目】已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在x=1处的切线为l:3x﹣y+1=0,当x= 时,y=f(x)有极值.
(1)求a、b、c的值;
(2)求y=f(x)在[﹣3,1]上的最大值和最小值.

【答案】
(1)解:由f(x)=x3+ax2+bx+c,得

f′(x)=3x2+2ax+b

当x=1时,切线l的斜率为3,可得2a+b=0.①

当x= 时,y=f(x)有极值,则f′ =0,

可得4a+3b+4=0.②

由①、②解得a=2,b=﹣4.

由于l上的切点的横坐标为x=1,

∴f(1)=4.∴1+a+b+c=4.

∴c=5.


(2)解:由(1)可得f(x)=x3+2x2﹣4x+5,

∴f′(x)=3x2+4x﹣4.

令f′(x)=0,得x=﹣2,或x=

∴f(x)在x=﹣2处取得极大值f(﹣2)=13.

在x= 处取得极小值f =

又f(﹣3)=8,f(1)=4.

∴f(x)在[﹣3,1]上的最大值为13,最小值为


【解析】(1)先对函数f(x)进行求导,根据f'(1)=3,f′ =0,f(1)=4可求出a,b,c的值,得到答案.(2)由(1)可知函数f(x)的解析式,然后求导数后令导函数等于0,再根据导函数的正负判断函数在[﹣3,1]上的单调性,最后可求出最值.
【考点精析】根据题目的已知条件,利用函数的极值与导数和函数的最大(小)值与导数的相关知识可以得到问题的答案,需要掌握求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值;求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网