题目内容

【题目】等差数列{an}的前n项和为Sn,且=9S6=60

(I)求数列{an}的通项公式;

II)若数列{bn}满足bn+1bn=n∈N+)且b1=3,求数列的前n项和Tn

【答案】an=2n+3;( .

【解析】试题分析:)设出等差数列的首项和公差,利用通项公式、前项和公式列出关于首项和公差的方程组进行求解;()利用迭代法取出数列的通项公式,再利用裂项抵消法进行求和.

试题解析:(Ⅰ)设等差数列{an}的公差为d,∵a3=9,S6=60.∴,解得

∴an=5+(n﹣1)×2=2n+3.

(Ⅱ)∵bn+1﹣bn=an=2n+3,b1=3,

n≥2时,bn=(bn﹣bn1)+…+(b2﹣b1)+b1

=[2(n﹣1)+3]+[2(n﹣2)+3]+…+[2×1+3]+3=

n=1时,b1=3适合上式,所以

=

=

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网