题目内容

【题目】已知椭圆C b0)的左、右顶点分别为A1A2,上、下顶点分别为B2B1O为坐标原点,四边形A1B1A2B2的面积为4,且该四边形内切圆的方程为

(Ⅰ)求椭圆C的方程;

(Ⅱ)若MN是椭圆C上的两个不同的动点,直线OMON的斜率之积等于,试探求△OMN的面积是否为定值,并说明理由.

【答案】;(见解析.

【解析】试题分析:)先利用四边形的面积求得,再利用直线和圆相切进行求解;()设出直线方程,联立直线和椭圆的方程,得到关于的一元二次方程,利用根与系数的关系、直线的斜率公式和三角形的面积公式进行求解.

试题解析:(Ⅰ)∵四边形A1B1A2B2的面积为4,又可知四边形A1B1A2B2为菱形,

,即ab=2①

由题意可得直线A2B2方程为:,即bx+ay﹣ab=0,

∵四边形A1B1A2B2内切圆方程为

∴圆心O到直线A2B2的距离为,即

由①②解得:a=2,b=1,∴椭圆C的方程为:

(Ⅱ)若直线MN的斜率存在,设直线MN的方程为y=kx+m,M(x1,y1),N(x2,y2),

得:(1+4k2)x2+8mkx+4(m2﹣1)=0∵直线l与椭圆C相交于M,N两个不同的点,

∴△=64m2k2﹣16(1+4k2)(m2﹣1)>0得:1+4k2﹣m2>0③

由韦达定理:

∵直线OM,ON的斜率之积等于

∴2m2=4k2+1满足③…(9分)

O到直线MN的距离为

所以△OMN的面积

若直线MN的斜率不存在,M,N关于x轴对称

M(x1,y1),N(x1,﹣y1),则

又∵M在椭圆上,,∴

所以△OMN的面积S===1.

综上可知,△OMN的面积为定值1.

练习册系列答案
相关题目

【题目】如图,在四棱锥中,底面是平行四边形, ,侧面底面 分别为 的中点,点在线段上.

(1)求证: 平面

(2)若直线与平面所成的角和直线与平面所成的角相等,求的值.

【答案】(1)证明见解析;(2) .

【解析】试题分析:

在平行四边形中,由条件可得,进而可得。由侧面底面,得底面,故得,所以可证得平面.(Ⅱ)先证明平面平面,由面面平行的性质可得平面.(Ⅲ)建立空间直角坐标系,通过求出平面的法向量,根据线面角的向量公式可得

试题解析:

(Ⅰ)证明:在平行四边形中,

分别为 的中点,

∵侧面底面,且

底面

底面

平面 平面

平面

(Ⅱ)证明:∵的中点, 的中点,

平面 平面

平面

同理平面

平面 平面

∴平面平面

平面

平面

(Ⅲ)解:由底面 ,可得 两两垂直,

建立如图空间直角坐标系

所以

,则

易得平面的法向量

设平面的法向量为,则:

,得

,得

∵直线与平面所成的角和此直线与平面所成的角相等,

,即

解得(舍去),

点睛用向量法确定空间中点的位置的方法

根据题意建立适当的空间直角坐标系,由条件确定有关点的坐标,运用共线向量用参数(参数的范围要事先确定确定出未知点的坐标,根据向量的运算得到平面的法向量或直线的方向向量,根据所给的线面角(或二面角)的大小进行运算,进而求得参数的值,通过与事先确定的参数的范围进行比较,来判断参数的值是否符合题意进而得出点是否存在的结论。

型】解答
束】
21

【题目】如图,椭圆上的点到左焦点的距离最大值是,已知点在椭圆上,其中为椭圆的离心率.

(1)求椭圆的方程;

(2)过原点且斜率为的直线交椭圆于两点,其中在第一象限,它在轴上的射影为点,直线交椭圆于另一点.证明:对任意的,点恒在以线段为直径的圆内.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网