题目内容

5.在地上画一正方形线框,其边长为一枚硬币直径的2倍,向正方形内投硬币,硬币完全落在正方形外的不计,则硬币完全落在正方形内的概率为$\frac{4}{32+π}$.

分析 由题意知本题是一个几何概型,概率等于面积之比,根据题意算出试验包含的总面积和符合条件的面积,两者求比值,得到要求的概率.

解答 解:设硬币的直径为2cm,正方形线框的边长为4.
考虑圆心的运动情况.
因为每次投掷都落在最大的正方形内或与最大的正方形有公共点,所以圆心的最大限度为原正方形向外再扩张1个小圆半径的区域,且四角为四分之圆弧;
此时总面积为:
4×4+4×4×1+π×12=32+π;
完全落在最大的正方形内时,圆心的位置在2为边长的正方形内,
其面积为:2×2=4;
∴硬币落下后完全在最大的正方形内的概率为:P=$\frac{4}{32+π}$,
故答案为:$\frac{4}{32+π}$

点评 本题考查几何概型和求面积的方法,正确理解本题题意是解决本题的关键.难度较大.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网