题目内容

【题目】阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果集中在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是他的研究成果之一,指的是:已知动点M与两定点AB的距离之比为λ(λ>0,λ≠1),那么点M的轨迹就是阿波罗尼斯圆.下面,我们来研究与此相关的一个问题.已知圆:x2+y2=1和点,点B(1,1),M为圆O上动点,则2|MA|+|MB|的最小值为_____

【答案】

【解析】

由题意,取点K(﹣2,0),连接OM、MK.由△MOK∽△AOM,可得,推出MK=2MA,在△MBK中,MB+MK≥BK,推出2|MA|+|MB|=|MB|+|MK|的最小值为BK的长.

如图所示,取点K(﹣2,0),连接OM、MK.

∵OM=1,OA=,OK=2,∴

∵∠MOK=∠AOM,∴△MOK∽△AOM,∴,∴MK=2MA,

∴|MB|+2|MA|=|MB|+|MK|,

在△MBK中,|MB|+|MK|≥|BK|,

∴|MB|+2|MA|=|MB|+|MK|的最小值为|BK|的长,

∵B(1,1),K(﹣2,0),∴|BK|=.

故答案为:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网