题目内容
【题目】从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为.
(Ⅰ)设表示一辆车从甲地到乙地遇到红灯的个数,求随机变量的分布列和数学期望;
(Ⅱ)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.
【答案】(Ⅰ)见解析;(Ⅱ).
【解析】试题分析: 表示一辆车从甲地到乙地遇到红灯的个数, 的所有可能取值为0,1,2,3.分别求出相应的概率值,列出随机变量的分布列并计算数学期望, 表示第一辆车遇到红灯的个数, 表示第二辆车遇到红灯的个数,这2辆车共遇到1个红灯就是包括第一辆遇到1次红灯且第2辆没遇上和第一辆没遇上红灯且第2辆遇上1次红灯两个事件的概率的和.
试题解析:(Ⅰ)解:随机变量的所有可能取值为0,1,2,3.
,
,
,
.
所以,随机变量的分布列为
0 | 1 | 2 | 3 | |
随机变量的数学期望.
(Ⅱ)解:设表示第一辆车遇到红灯的个数, 表示第二辆车遇到红灯的个数,则所求事件的概率为
.
所以,这2辆车共遇到1个红灯的概率为.
练习册系列答案
相关题目
【题目】某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图(如图所示),规定80分及以上者晋级成功,否则晋级失败(满分为100分).
晋级成功 | 晋级失败 | 合计 | |
男 | 16 | ||
女 | 50 | ||
合计 |
(Ⅰ)求图中的值;
(Ⅱ)根据已知条件完成下面列联表,并判断能否有85%的把握认为“晋级成功”与性别有关?
(Ⅲ)将频率视为概率,从本次考试的所有人员中,随机抽取4人进行约谈,记这4人中晋级失败的人数为,求的分布列与数学期望.
(参考公式:,其中)
0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
0.780 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |