题目内容

【题目】已知函数f(x)=|x2﹣2ax+b|(x∈R),给出下列命题:
a∈R,使f(x)为偶函数;
②若f(0)=f(2),则f(x)的图象关于x=1对称;
③若a2﹣b≤0,则f(x)在区间[a,+∞)上是增函数;
④若a2﹣b﹣2>0,则函数h(x)=f(x)﹣2有2个零点.
其中正确命题的序号为

【答案】①③
【解析】解:①当a=0时,f(x)=|x2+b|显然是偶函数,故①正确;
②取a=0,b=﹣2,函数f(x)=|x2﹣2ax+b|化为f(x)=|x2﹣2|,满足f(0)=f(2),
但f(x)的图象不关于x=1对称,故②错误;
③若a2﹣b≤0,则f(x)=|(x﹣a)2+b﹣a2|=(x﹣a)2+b﹣a2在区间[a,+∞)上是增函数,故③正确;
④h(x)=|(x﹣a)2+b﹣a2|﹣2有4个零点,故④错误.

∴正确命题为①③.
所以答案是:①③.
【考点精析】根据题目的已知条件,利用命题的真假判断与应用的相关知识可以得到问题的答案,需要掌握两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网