题目内容

【题目】如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.
(1)求证:PC⊥BC;
(2)求点A到平面PBC的距离.

【答案】
(1)证明:因为PD⊥平面ABCD,BC平面ABCD,所以PD⊥BC.

由∠BCD=90°,得CD⊥BC,

又PD∩DC=D,PD、DC平面PCD,

所以BC⊥平面PCD.

因为PC平面PCD,故PC⊥BC.


(2)解:(方法一)分别取AB、PC的中点E、F,连DE、DF,则:

易证DE∥CB,DE∥平面PBC,点D、E到平面PBC的距离相等.

又点A到平面PBC的距离等于E到平面PBC的距离的2倍.

由(1)知:BC⊥平面PCD,所以平面PBC⊥平面PCD于PC,

因为PD=DC,PF=FC,所以DF⊥PC,所以DF⊥平面PBC于F.

易知DF= ,故点A到平面PBC的距离等于

(方法二)等体积法:连接AC.设点A到平面PBC的距离为h.

因为AB∥DC,∠BCD=90°,所以∠ABC=90°.

从而AB=2,BC=1,得△ABC的面积S△ABC=1.

由PD⊥平面ABCD及PD=1,得三棱锥P﹣ABC的体积

因为PD⊥平面ABCD,DC平面ABCD,所以PD⊥DC.

又PD=DC=1,所以

由PC⊥BC,BC=1,得△PBC的面积

由VA﹣PBC=VP﹣ABC ,得

故点A到平面PBC的距离等于


【解析】(1),要证明PC⊥BC,可以转化为证明BC垂直于PC所在的平面,由PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°,容易证明BC⊥平面PCD,从而得证;(2),有两种方法可以求点A到平面PBC的距离:

方法一,注意到第一问证明的结论,取AB的中点E,容易证明DE∥平面PBC,点D、E到平面PBC的距离相等,而A到平面PBC的距离等于E到平面PBC的距离的2倍,由第一问证明的结论知平面PBC⊥平面PCD,交线是PC,所以只求D到PC的距离即可,在等腰直角三角形PDC中易求;

方法二,等体积法:连接AC,则三棱锥P﹣ACB与三棱锥A﹣PBC体积相等,而三棱锥P﹣ACB体积易求,三棱锥A﹣PBC的地面PBC的面积易求,其高即为点A到平面PBC的距离,设为h,则利用体积相等即求.

【考点精析】认真审题,首先需要了解空间中直线与平面之间的位置关系(直线在平面内—有无数个公共点;直线与平面相交—有且只有一个公共点;直线在平面平行—没有公共点).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网