题目内容
【题目】如图,准备在墙上钉一个支架,支架由两直杆AC与BD 焊接而成,焊接点 D 把杆AC 分成 AD, CD 两段,其中两固定点A,B 间距离为1 米,AB 与杆 AC 的夹角为60 ,杆AC 长为 1 米,若制作 AD 段的成本为a 元/米,制作 CD 段的成本是 2a 元/米,制作杆BD 成本是 3a 元/米. 设 ADB ,则制作整个支架的总成本记为 S 元.
(1)求S关于 的函数表达式,并求出的取值范围;
(2)问 段多长时,S最小?
【答案】(1) ;(2) 时S最小.
【解析】试题分析:在中,由正弦定理得,进而利用三角形的面积公式,得到关于的表达式即的取值范围.
(2)求德,得到函数的单调性,即可得到函数的极值与最值.
试题解析:
(1)在△ABD中,由正弦定理得,
所以,
则 ,
由题意得.
(2)令, ,设,
- | 0 | + | |
单调递减 | 极大值 | 单调递增 |
所以当时,S最小,此时
∴ 当时S最小.
练习册系列答案
相关题目
【题目】某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如下表:
年 份 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
年份代号t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均纯收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求y关于t的线性回归方程;
(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.
附:回归直线的斜率和截距的最小二乘估计公式分别为:
=,=-.