题目内容
【题目】已知圆的圆心为原点,且与直线相切.
(1)求圆的方程;
(2)点在直线上,过点引圆的两条切线,,切点为,,求证:直线恒过定点.
(3)求的取值范围.
【答案】(1)(2)证明见解析(3)
【解析】
根据题意,设圆C的半径为r,由直线与圆的位置关系可得,即可得圆的标准方程;
设,求出的值,求出以P为圆心,PA为半径为圆的方程,分析可得直线AB为圆C与圆P的公共弦所在的直线,联立2个圆的方程,即可得直线AB的方程,分析可得结论;
根据题意,设,,在中,可得,由数量积的计算公式可得,结合b的范围分析可得答案.
(1)由题知圆的半径
∴圆的方程为
(2)设点则,
∴
∴圆的方程为:①
又圆方程为:②
由①—②得即为
∴直线方程为:
∴直线过定点
(3)设,则
∴的取值范围是
练习册系列答案
相关题目