题目内容
8.已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,0<x≤16}\\{cos\frac{πx}{6},x>16}\end{array}\right.$,则f(f(-32))=( )A. | -1 | B. | -1+log2$\sqrt{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{1}{2}$log23 |
分析 根据已知条件,先求f(-32)=cos$\frac{32π}{6}$=$\frac{1}{2}$,所以得到f(f(-32))=f($\frac{1}{2}$)=$lo{g}_{2}\frac{1}{2}$=-1.
解答 解:∵f(x)为R上的奇函数,再根据f(x)在x>0时的解析式可得到:
∴f(f(-32))=f(-f(32))=f$(cos\frac{32π}{6})=f(\frac{1}{2})=lo{g}_{2}\frac{1}{2}=-1$.
故选A.
点评 考查奇函数的定义,分段函数求值的方法,三角函数的诱导公式,以及对数的运算.
练习册系列答案
相关题目
18.命题“?k0∈R,使函数f(x)=x2+k0x(x∈R)是偶函数”的否定是( )
A. | ?k∈R,函数f(x)=x2+kx(x∈R)不是偶函数 | |
B. | ?k0∈R,使函数f(x)=x2+k0x(x∈R)都是奇函数 | |
C. | ?k∈R,函数f(x)=x2+kx(x∈R)不是偶函数 | |
D. | ?k0∈R,使函数f(x)=x2+k0x(x∈R)是奇函数 |
19.已知P1(x1,y1),P2(x2,y2)在圆O:x2+y2=4上,∠P1OP2=θ(θ为钝角),sin(θ+$\frac{π}{4}$)=$\frac{1}{3}$,则x1x2+y1y2=( )
A. | $\frac{{2\sqrt{2}+8}}{3}$ | B. | $\frac{{2\sqrt{2}-4}}{3}$ | C. | $\frac{{2\sqrt{2}+4}}{3}$ | D. | $\frac{{2\sqrt{2}-8}}{3}$ |
16.过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1右焦点F作一条直线,当直线斜率为2时,直线与双曲线左、右两支各有一个交点;当直线斜率为3时,直线与双曲线右支有两个不同交点,则双曲线离心率的取值范围是( )
A. | (1,$\sqrt{2}$) | B. | (1,$\sqrt{2}$+1) | C. | ($\sqrt{2}$+1,$\sqrt{10}$) | D. | ($\sqrt{5}$,$\sqrt{10}$) |
3.某几何体的三视图如图所示,则这个几何体的表面积为( )
A. | 9 | B. | 18+9$\sqrt{3}$ | C. | 18+3$\sqrt{2}$ | D. | 9+18$\sqrt{2}$ |