题目内容
【题目】用6个字母编拟某种信号程序(大小写有区别),把这6个字母全部排列如图所示的表格中,每个字母必须使用且只使用一次,不同的排列方式表示不同的信号,如果恰有一对字母(同一个字母的大小写)排到同一列的上下格位置,那么称此信号为“微错号”,则不同的“微错号”的总数为( )
A.144B.288C.432D.576
【答案】B
【解析】
根据题意,分三步进行(1)先确定排到同一列的上下各位置的一对字母,由分步计数原理可得其放法数目;(2)确定好第一组数据,剩下两组数据对应四个表格,分析方法(1),则可确定第二组字母的放法数目;(3)剩最后一组字母放入最后两个位置,由排列公式即可得其放法数目.最后由分步计数原理计算即可得出答案.
根据题意分析,分三步进行:(1)先选定排列到同一列上下格位置的一对字母,有种情况,再将其放入表格中,有种情况,再考虑这一对字母的顺序有种不同的顺序;
(2)再分析第二对字母,假设(1)中选定的为,则剩下的两组字母中选一组有种情况,再将其放入表格中有种不同结果,再考虑这一对字母的顺序有种不同的顺序;
(3)最后一对字母放入最后两个位置有种不同的排法.
所以共有个“微错号”.
故选:B.
【题目】在某批次的某种灯泡中,随机地抽取200个样品,并对其寿命进行追踪调查,将结果列成频率分布表如表1.根据寿命将灯泡分成优等品、正品和次品三个等级,其中寿命大于或等于500天的灯泡为优等品,寿命小于300天的灯泡为次品,其余的灯泡为正品.
表1
寿命(天) | 频数 | 频率 |
20 | 0.10 | |
30 | a | |
70 | 0.35 | |
b | 0.15 | |
50 | 0.25 | |
合计 | 200 | 1 |
(1)根据表1中的数据,写出a、b的值;
(2)某人从灯泡样品中随机地购买了个,若这n个灯泡的等级情形恰与按三个等级分层抽样所得的结果相同,求n的最小值;
(3)某人从这个批次的灯泡中随机地购买了3个进行使用,若以上述频率作为概率,用X表示此人所购买的灯泡中次品的个数,求X的分布列和数学期望.