题目内容
10.204与85的最大公约数是17.分析 用较大的数字除以较小的数字,得到商和余数,然后再用上一式中的除数和得到的余数中较大的除以较小的,以此类推,当整除时就得到要求的最大公约数.
解答 解:∵204=2×85+34
85=2×34+17
34=2×17
∴204与85的最大公约数为17,
故答案为:17.
点评 本题考查用辗转相除法求两个数的最大公约数,在解题时注意数字的运算不要出错,属于基础题.
练习册系列答案
相关题目
18.已知函数g(x)=Acos(?x+ϕ)(A>0,?>0,|ϕ|<$\frac{π}{2}$)的部分图象如图所示,f(x)的图象可由g(x)的图象向左平移2个单位得到,则f(1)+f(2)+…+f(2004)=( )
A. | 1 | B. | 3$+\sqrt{3}$ | C. | 2+$\sqrt{3}$ | D. | 0 |
19.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x}(x≤0)}\\{lo{g}_{2}x(x>0)}\end{array}\right.$,若f[f(x)]≥-2,则x的取值范围是( )
A. | [-2,1] | B. | [$\root{4}{2}$,+∞) | C. | [-2,1]∪[$\root{4}{2}$,+∞) | D. | [0,1]∪[$\root{4}{2}$,+∞) |
20.某种产品的广告费用x与销售额y的统计数据如下表:
(1)利用所给数据求广告费用x与销售额y之间的线性回归方程$\widehat{y}$=$\widehat{a}$+$\widehat{b}$x;
(2)预计在今后的销售中,销售额与广告费用还服从(1)中的关系,如果广告费用为6万元,请预测销售额为多少万元?
附:其中$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n(\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
广告费用x(万元) | 1 | 2 | 3 | 4 | 5 |
销售额y(万元) | 10 | 12 | 15 | 18 | 20 |
(2)预计在今后的销售中,销售额与广告费用还服从(1)中的关系,如果广告费用为6万元,请预测销售额为多少万元?
附:其中$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n(\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.