题目内容

【题目】已知数列{an}满足,且

(1)求证:数列是等差数列,并求出数列的通项公式;

(2)求数列的前项和.

【答案】(1) an=(2n-1)2n-1;(2) Sn=(2n-3)2n+3.

【解析】

(1)根据等差数列的定义,判断数列是等差数列,并写出它的通项公式以及{an}的通项公式;
(2)根据数列{an}的前n项和定义,利用错位相减法求出Sn

(1)证明:因为an=2an-1+2n,所以+1,

=1,所以数列是等差数列,且公差d=1,其首项,所以+(n-1)×1=n,解得an×2n=(2n-1)2n-1.

(2)Sn=1×20+3×21+5×22+…+(2n-1)×2n-1,①

2Sn=1×21+3×22+5×23+…+(2n-3)×2n-1+(2n-1)×2n,②

①-②,得-Sn=1×20+2×21+2×22+…+2×2n-1-(2n-1)2n

=1+-(2n-1)2n=(3-2n)2n-3.

所以Sn=(2n-3)2n+3.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网