题目内容

((10分)如图所示,在四棱锥PABCD中,底面为直角梯形,ADBCBAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BCMN分别为PCPB的中点.

(1)求证:PBDM
(2)求BD与平面ADMN所成的角.                          
30°
(1)证明 ∵N是PB的中点,PA=AB,

∴AN⊥PB.∵∠BAD=90°,∴AD⊥AB.
∵PA⊥平面ABCD,∴PA⊥AD.
∵PA∩AB=A,∴AD⊥平面PAB,∴AD⊥PB.             
又∵AD∩AN=A,∴PB⊥平面ADMN.
∵DM平面ADMN,∴PB⊥DM.                        
(2)解 连接DN,
∵PB⊥平面ADMN,
∴∠BDN是BD与平面ADMN所成的角,                
在Rt△BDN中,
sin∠BDN===,                           
∴∠BDN=30°,即BD与平面ADMN所成的角为30°.            
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网