题目内容
已知数列
的前
项和为
,且
.数列
为等比数列,且
,
.
(Ⅰ)求数列
,
的通项公式;
(Ⅱ)若数列
满足
,求数列
的前
项和
;
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182900676263.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182900739192.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182900770220.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182900785388.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182900801263.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182900817245.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182900832261.gif)
(Ⅰ)求数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182900676263.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182900801263.gif)
(Ⅱ)若数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182900895256.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182900910383.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182900895256.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182900739192.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182901097211.gif)
见解析
(Ⅰ)∵数列
的前
项和为
,且
,
∴当
时,
.
当
时,
亦满足上式,故
,
. ………………3分
又数列
为等比数列,设公比为
,
∵
,
, ∴
.
∴
. …………6分
(Ⅱ)
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182901581517.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182901597682.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182901690555.gif)
.
所以
. ………………12分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182900676263.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182900739192.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182900770220.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182900785388.gif)
∴当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182901316244.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182901347729.gif)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182901347232.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182901363304.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182901394421.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182901409448.gif)
又数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182900801263.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182901441199.gif)
∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182900817245.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182901472464.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182901503241.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182901519399.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182901550441.gif)
(Ⅱ)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182901565588.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182901581517.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182901597682.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182901690555.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182901706564.gif)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182901721471.gif)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目