题目内容

14.根据下列要求的精确度,求2.036的近似值.
(1)精确到0.1;
(2)精确到0.01.

分析 根据2.036 =(2+0.03)6,按照二项式定理展开,结合精度求得它的值.

解答 解:(1)当精确到0.1时,2.036 =(2+0.03)6=${C}_{6}^{0}$•26+${C}_{6}^{1}$•25•0.03+${C}_{6}^{2}$•24•0.032+…+${C}_{6}^{6}$•0.036 
≈${C}_{6}^{0}$•26+${C}_{6}^{1}$•25•0.03+${C}_{6}^{2}$•24•0.032=64+192×0.03+240×0.0009=64+5.76+0.216≈71.0.
即 2.036 ≈71.0.
(2)当精确到0.01,2.036 =(2+0.03)6=${C}_{6}^{0}$•26+${C}_{6}^{1}$•25•0.03+${C}_{6}^{2}$•24•0.032+…+${C}_{6}^{6}$•0.036
≈${C}_{6}^{0}$•26+${C}_{6}^{1}$•25•0.03+${C}_{6}^{2}$•24•0.032+${C}_{6}^{3}$•23•0.033=64+192×0.03+240×0.0009+0.00432
=64+5.76+0.216+0.00432≈70.98,
即 2.036 ≈70.98.

点评 本题主要考查二项式定理的应用,精确度的定义,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网