题目内容
(本小题满分12分)一动圆与已知
:
相外切,与
:
相内切.
(Ⅰ)求动圆圆心的轨迹C;
(Ⅱ)若轨迹C与直线y="kx+m" (k≠0)相交于不同的两点M、N,当点A(0,
1)满足|
|=|
| 时,求m的取值范围.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142244798248.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142244814559.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142244829250.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142244845679.gif)
(Ⅰ)求动圆圆心的轨迹C;
(Ⅱ)若轨迹C与直线y="kx+m" (k≠0)相交于不同的两点M、N,当点A(0,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082314224492381.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142244939376.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142244954256.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142244970471.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142245001499.gif)
(Ⅰ)设动圆圆心为M(x , y),半径为R,则由题设条件,可知:
|MO1|="1+R" ,|MO2|=(2
)
R, ∴|MO1|+|MO2|=2
.
由椭圆定义知:M在以O1,O2为焦点的椭圆上,且
,
,
,故动圆圆心的轨迹方程为
.…………………4分
(Ⅱ)设P为MN的中点,联立方程组
,
(3k2+1)x2+6mkx+3(m2
1)=0.
=
12m2+36k2+12>0
m2<3k2+1 …………………… (1) ………………6分
又![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231422453602019.gif)
由
⊥
…………(2) ……………9分
.故
.…………12分高&考%
|MO1|="1+R" ,|MO2|=(2
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142245017261.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082314224492381.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142245079227.gif)
由椭圆定义知:M在以O1,O2为焦点的椭圆上,且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142245095278.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142245204266.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142245219506.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142244970471.gif)
(Ⅱ)设P为MN的中点,联立方程组
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142245251738.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142245266142.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082314224492381.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142245297198.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082314224492381.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142245266142.gif)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231422453602019.gif)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142245422368.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142245422984.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231422456091815.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823142245001499.gif)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目