题目内容

【题目】已知函数f(x)=2cosx(sinx﹣cosx)+1,x∈R.
(1)求函数f(x)的单调递增区间;
(2)将函数y=f(x)的图象向左平移 个单位后,再将图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的最大值及取得最大值时的x的集合.

【答案】
(1)解:

因此,函数f(x)的单调递增取间为


(2)解:由已知,

∴当 时,

∴当 ,g(x)的最大值为


【解析】(1)化简函数f(x)=2cosx(sinx﹣cosx)+1为一个角的有关三角函数的形式,利用y=sinx的增减性求函数f(x)的单调递增取间.(2)求出 ,求出最大值时的x的值即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网