题目内容
【题目】函数,函数 ,若对所有的总存在,使得成立,则实数的取值范围是__________.
【答案】
【解析】
分别求得f(x)、g(x)在[0,]上的值域,结合题意可得它们的值域间的包含关系,从而求得实数m的取值范围.
∵f(x)=sin2x+(2cos2x﹣1)=sin2x+cos2x=2sin(2x+),
当x∈[0,],2x+∈[,],∴sin(2x+)∈[1,2],∴f(x)∈[1,2].
对于g(x)=mcos(2x﹣)﹣2m+3(m>0),2x﹣∈[﹣,],mcos(2x﹣)∈[,m],
∴g(x)∈[﹣+3,3﹣m].
由于对所有的x2∈[0,]总存在x1∈[0,],使得f(x1)=g(x2)成立,
可得[﹣+3,3﹣m][1,2],
故有 3﹣m≤2,﹣+3≥1,解得实数m的取值范围是[1,].
故答案为:.
练习册系列答案
相关题目