题目内容
【题目】已知.
(1)讨论的单调性;
(2)若有三个不同的零点,求的取值范围.
【答案】(1)见解析(2)
【解析】试题分析:(1),对a分类讨论,从而得到的单调性;
(2),则,对a分类讨论,研究函数的图象走势,从而得到的取值范围.
试题解析:
(1)由已知的定乂域为,又,
当时,恒成立;
当时,令得;令得.
综上所述,当时,在上为增函数;
当时,在上为增函数,在上为减函数.
(2)由题意,则,
当时,∵,
∴在上为增函数,不符合题意.
当时,,
令,则.
令的两根分别为且,
则∵,∴,
当时,,∴,∴在上为增函数;
当时,,∴,∴在上为减函数;
当时,,∴,∴在上为增函数.
∵,∴在上只有一个零点 1,且。
∴
,
,
.
∵,又当时,.∴
∴在上必有一个零点.
∴
.
∵,又当时,,∴.
∴在上必有一个零点.
综上所述,故的取值范围为.
练习册系列答案
相关题目