题目内容
(本题满分15分)已知正方体
的棱长为1,点
在
上,点
在
上,且![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214858049748.png)
(1)求直线
与平面
所成角的余弦值;
(2)用
表示平面
和侧面
所成的锐二面角的大小,求
;
(3)若
分别在
上,并满足
,探索:当
的重心为
且
时,求实数
的取值范围.![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232148586733177.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214857955787.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214857971318.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214857986365.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214858018302.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214858033373.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214858049748.png)
(1)求直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214858127372.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214858142553.png)
(2)用
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214858174297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214858142553.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214858205512.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214858236430.png)
(3)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214858252492.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214858267708.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232148584231571.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214858439553.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214858470316.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214858626553.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214858642283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232148586733177.png)
(1)
(2)
,则
(3)
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214858704507.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232148587201109.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214858735606.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214858922428.png)
第一问中利用以
为
轴,
为
轴,
为
轴建立空间直角坐标系
设
为平面
的法向量,又正方体的棱长为1,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232148591411413.png)
借助于
,得到结论
第二问中,
,
是平面
的法向量
,又平面
和侧面
所成的锐二面角为![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214858174297.png)
,则
第三问中,因为
分别在
上,且![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232148584231571.png)
故
,
所以当
的重心为![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214859812900.png)
然后利用垂直关系得到结论。
解:(1)以
为
轴,
为
轴,
为
轴建立空间直角坐标系
又正方体的棱长为1,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232148599521408.png)
设
为平面
的法向量
令
,则![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214900046666.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232148591721048.png)
设直线
与平面
所成角为
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232149004041221.png)
直线
与平面
所成角的余弦值为
(5分)
(2)
,
是平面
的法向量
,又平面
和侧面
所成的锐二面角为![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214858174297.png)
,则
(5分)
(3)因为
分别在
上,且![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232148584231571.png)
故
,
所以当
的重心为
,而![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214900826545.png)
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232149008571051.png)
当
时,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214900904606.png)
为恒等式
所以,实数
的取值范围为
(5分)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214858938385.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214858954266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214858969398.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214859000310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214858127372.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214859047231.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214859063682.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214858142553.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232148591411413.png)
借助于
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232148591721048.png)
第二问中,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214859188739.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214859219636.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214858205512.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232148594061016.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214858142553.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214858205512.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214858174297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232148587201109.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214858735606.png)
第三问中,因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214858252492.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214858267708.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232148584231571.png)
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232148597651076.png)
所以当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214858439553.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214859812900.png)
然后利用垂直关系得到结论。
解:(1)以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214858938385.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214858954266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214858969398.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214859000310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214858127372.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214859047231.png)
又正方体的棱长为1,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232148599521408.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214859063682.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214858142553.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232149000141572.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214900030365.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214900046666.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232148591721048.png)
设直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214858127372.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214858142553.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214900389310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232149004041221.png)
直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214858127372.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214858142553.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214858704507.png)
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214859188739.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214859219636.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214858205512.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232148594061016.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214858142553.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214858205512.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214858174297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232148587201109.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214858735606.png)
(3)因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214858252492.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214858267708.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232148584231571.png)
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232148597651076.png)
所以当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214858439553.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214859812900.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214900826545.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214900841969.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232149008571051.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214858626553.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214900904606.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232149009191073.png)
所以,实数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214858642283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214858922428.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目