题目内容

设全集为R,集合A={x|x<1},B={x|
1
x-2
>0},则(  )
A、(∁RA)⊆B
B、A⊆(∁RB)
C、A⊆B
D、B⊆A
考点:集合的包含关系判断及应用
专题:计算题,集合
分析:根据题意,解
1
x-2
>0可得集合B,由此以此分析选项即可得答案.
解答:解:根据题意,
1
x-2
>0⇒x>2,则B={x|
1
x-2
>0}={x|x>2},
以此分析选项:
对于A、∁RA={x|x≥1},有B⊆(∁RA),A错误;
对于B、∁RB={x|x≤2},有A⊆(∁RB),B正确;
对于C、A={x|x<1},B={x|x>2},A⊆B不成立,C错误;
同理D错误;
故选:B.
点评:本题考查集合间的运算,关键是解分式不等式求出集合B.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网