题目内容

【题目】设数列{an}的各项都是正数,且对任意n∈N* , 都有(an﹣1)(an+3)=4Sn , 其中Sn为数列{an}的前n项和.
(1)求证数列{an}是等差数列;
(2)若数列{ }的前n项和为Tn , 求Tn

【答案】
(1)解:∵对任意n∈N*,都有(an﹣1)(an+3)=4Sn,即

∴当n≥2时,4an=4(Sn﹣Sn1)= = ﹣2an1

化为(an+an1)(an﹣an1﹣2)=0,

∵对任意n∈N*,an>0.

∴an+an1>0.

∴an﹣an1=2.

∴数列{an}是等差数列,公差为2


(2)解:由(1),a1=3,d=2,∴an=3+2(n﹣1)=2n+1.

=4n(n+1),

= = ,n∈N*

∴Tn=


【解析】(1)由已知利用“当n≥2时,an=Sn﹣Sn1”即可求得an与an1的关系,进而证明数列{an}是等差数列.(2)利用(1)可得 = = ,n∈N* , 再利用“裂项求和”即可得出.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网