题目内容
【题目】已知数列{bn}满足bn=| |,其中a1=2,an+1= .
(1)求b1 , b2 , b3 , 并猜想bn的表达式(不必写出证明过程);
(2)由(1)写出数列{bn}的前n项和Sn , 并用数学归纳法证明.
【答案】
(1)解:∵a1=2,an+1= ,∴ , ,
又bn=| |,得b1=4,b2=8,b3=16,
猜想:
(2)解:由(1)可得,数列{bn}是以4为首项,2为公比的等比数列,
则有 .
证明:当n=1时, 成立;
假设当n=k时,有 ,
则当n=k+1时, =2k+3﹣4=2(k+1)+2﹣4.
综上, 成立
【解析】(1)由已知结合数列递推式求得b1 , b2 , b3 , 并猜想bn的表达式;(2)由等比数列的前n项和公式求得数列{bn}的前n项和Sn , 并用数学归纳法证明.
【考点精析】关于本题考查的数列的前n项和和数学归纳法的定义,需要了解数列{an}的前n项和sn与通项an的关系;数学归纳法是证明关于正整数n的命题的一种方法才能得出正确答案.
练习册系列答案
相关题目
【题目】某厂生产甲、乙两种产品每吨所需的煤、电和产值如下表所示.
用煤(吨) | 用电(千瓦) | 产值(万元) | |
甲产品 | 3 | 50 | 12 |
乙产品 | 7 | 20 | 8 |
但国家每天分配给该厂的煤、电有限,每天供煤至多47吨,供电至多300千瓦,问该厂如何安排生产,使得该厂日产值最大?最大日产值为多少?