题目内容
【题目】已知数列{an}的首项a1=1,且满足an+1﹣an≤n2n , an﹣an+2≤﹣(3n+2)2n , 则a2017= .
【答案】2015×22017+3
【解析】解:∵an+1﹣an≤n2n,an﹣an+2≤﹣(3n+2)2n,
∴an+1﹣an+2≤n2n﹣(3n+2)2n=﹣(n+1)2n+1.即an+2﹣an+1≥(n+1)2n+1.
又an+2﹣an+1≤(n+1)2n+1.
∴an+2﹣an+1=(n+1)2n+1.
可得:an+1﹣an=n2n,(n=1时有时成立).
∴an=(an﹣an﹣1)+(an﹣1﹣an﹣2)+…+(a2﹣a1)+a1
=(n﹣1)2n﹣1+(n﹣2)2n﹣2+…+222+2+1.
2an=(n﹣1)2n+(n﹣2)2n﹣1+…+22+2,
可得:﹣an=﹣(n﹣1)2n+2n﹣1+2n﹣2+…+22+1= ﹣1﹣(n﹣1)2n.
∴an=(n﹣2)2n+3.
∴a2017=201522017+3.
所以答案是:2015×22017+3.
【考点精析】解答此题的关键在于理解数列的通项公式的相关知识,掌握如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.
练习册系列答案
相关题目