题目内容

【题目】已知数列{an}的首项a1=1,且满足an+1﹣an≤n2n , an﹣an+2≤﹣(3n+2)2n , 则a2017=

【答案】2015×22017+3
【解析】解:∵an+1﹣an≤n2n,an﹣an+2≤﹣(3n+2)2n

∴an+1﹣an+2≤n2n﹣(3n+2)2n=﹣(n+1)2n+1.即an+2﹣an+1≥(n+1)2n+1

又an+2﹣an+1≤(n+1)2n+1

∴an+2﹣an+1=(n+1)2n+1

可得:an+1﹣an=n2n,(n=1时有时成立).

∴an=(an﹣an1)+(an1﹣an2)+…+(a2﹣a1)+a1

=(n﹣1)2n1+(n﹣2)2n2+…+222+2+1.

2an=(n﹣1)2n+(n﹣2)2n1+…+22+2,

可得:﹣an=﹣(n﹣1)2n+2n1+2n2+…+22+1= ﹣1﹣(n﹣1)2n

∴an=(n﹣2)2n+3.

∴a2017=201522017+3.

所以答案是:2015×22017+3.

【考点精析】解答此题的关键在于理解数列的通项公式的相关知识,掌握如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网