题目内容

18.观察下列式子:
$\frac{1}{3}$=$\frac{1}{3}$;
$\frac{1}{3}$+$\frac{1}{15}$=$\frac{2}{5}$;
$\frac{1}{3}$+$\frac{1}{15}$+$\frac{1}{35}$=$\frac{3}{7}$;
$\frac{1}{3}$+$\frac{1}{15}$+$\frac{1}{35}$+$\frac{1}{63}$=$\frac{4}{9}$;

则可以归纳,当n∈N*时,有式子$\frac{1}{3}$+$\frac{1}{15}$+$\frac{1}{35}$+…+$\frac{1}{4{n}^{2}-1}$=$\frac{n}{2n+1}$.

分析 观察已知条件,找出规律即可写出结果.

解答 解:观察下列式子:
$\frac{1}{3}$=$\frac{1}{3}$;
$\frac{1}{3}$+$\frac{1}{15}$=$\frac{2}{5}$;
$\frac{1}{3}$+$\frac{1}{15}$+$\frac{1}{35}$=$\frac{3}{7}$;
$\frac{1}{3}$+$\frac{1}{15}$+$\frac{1}{35}$+$\frac{1}{63}$=$\frac{4}{9}$;

可以得到等式的左侧的项数与等式的个数相对应,分子是1,分母是连续的两个奇数的乘积,右侧分母是左侧分母最大的一个奇数,分子是等式的个数,
当n∈N*时,有式子$\frac{1}{3}$+$\frac{1}{15}$+$\frac{1}{35}$+…+$\frac{1}{4{n}^{2}-1}$=$\frac{n}{2n+1}$.
故答案为:$\frac{1}{3}$+$\frac{1}{15}$+$\frac{1}{35}$+…+$\frac{1}{4{n}^{2}-1}$=$\frac{n}{2n+1}$.

点评 本题考查归纳推理,找出规律是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网