题目内容
【题目】已知幂函数在上单调递增,又函数.
(1)求实数的值,并说明函数的单调性;
(2)若不等式恒成立,求实数的取值范围.
【答案】(1)见解析;(2)
【解析】
(1)由f(x)是幂函数,得到m2﹣m﹣1=1,再由f(x)在(0,+∞)上单调递增,得到﹣2m﹣1>0,从而求出m=﹣1,进而g(x),由此能求出函数g(x)在R上单调递增;
(2)由g(﹣x)=2﹣x()=﹣g(x),得到g(x)是奇函数,从而不等式g(1﹣3t)+g(1+t)≥0可变为g(1﹣3t)≥﹣g(1+t)=g(﹣1﹣t),由此能求出实数t的取值范围.
(1)因为是幂函数,所以,解得或,
又因为在上单调递增,所以,即,
即,则,
因为与均在上单调递增,
所以函数在上单调递增.
(2)因为,
所以是奇函数,
所以不等式可变为,
由(1)知在上单调递增,所以,
解得.
练习册系列答案
相关题目