题目内容
2.二项式(2x+3)12的展开式中系数最大的项的项数是:8.分析 先求得二项式(2x+3)12的展开式的通项公式,可得第r+1项的系数为${C}_{12}^{r}$•3r•212-r.设第r+1项的系数最大,则由 $\left\{\begin{array}{l}{{C}_{12}^{r}{•3}^{r}{•2}^{12-r}{≥C}_{12}^{r+1}{•3}^{r+1}{•2}^{11-r}}\\{{C}_{12}^{r}{•3}^{r}{{•2}^{12-r}≥C}_{12}^{r-1}{•3}^{r-1}{•2}^{13-r}}\end{array}\right.$求得r的范围,从而得出结论.
解答 解:二项式(2x+3)12的展开式的通项公式为Tr+1=${C}_{12}^{r}$•3r•212-r•x12-r,
可得第r+1项的系数为${C}_{12}^{r}$•3r•212-r.
设第r+1项的系数最大,则有 $\left\{\begin{array}{l}{{C}_{12}^{r}{•3}^{r}{•2}^{12-r}{≥C}_{12}^{r+1}{•3}^{r+1}{•2}^{11-r}}\\{{C}_{12}^{r}{•3}^{r}{{•2}^{12-r}≥C}_{12}^{r-1}{•3}^{r-1}{•2}^{13-r}}\end{array}\right.$,
即 $\left\{\begin{array}{l}{\frac{12!{•3}^{r}{•2}^{12-r}}{r!•(12-r)!}≥\frac{12!{•3}^{r+1}{•2}^{11-r}}{(r+1)!•(11-r)!}}\\{\frac{12!{•3}^{r}{•2}^{12-r}}{r!•(12-r)!}≥\frac{12!{•3}^{r-1}{•2}^{13-r}}{(r-1)!•(13-r)!}}\end{array}\right.$,即$\left\{\begin{array}{l}{r≥\frac{34}{5}}\\{r≤\frac{39}{5}}\end{array}\right.$,
求得$\frac{34}{5}$≤r≤$\frac{39}{5}$.
再结合r∈N,可得r=7,
故答案为:8.
点评 本题主要考查二项式定理的应用,二项式展开式的通项公式的应用,组合数的计算公式,属于中档题.
A. | -2014 | B. | -2013 | C. | -2012 | D. | -2011 |