题目内容
【题目】已知直线l1:ax+by+1=0(a,b不同时为0),l2:(a-2)x+y+a=0,
(1)若b=0,且l1⊥l2,求实数a的值;
(2)当b=3,且l1∥l2时,求直线l1与l2之间的距离.
【答案】(1) a=2. (2) d=.
【解析】
(1)当b=0时,l1垂直于x轴,所以由l1⊥l2知l2垂直于y轴,由此能求出实数a的值;
(2)由b=3且l1∥l2,先求出a的值,再由两条平行间的距离公式,能求出直线l1与l2之间的距离.
(1)当b=0,时,l1:ax+1=0,
由l1⊥l2知a﹣2=0,
解得a=2.
(2)当b=3时,l1:ax+3y+1=0,
当l1∥l2时,有
解得a=3,
此时,l1的方程为:3x+3y+1=0,
l2的方程为:x+y+3=0,
即3x+3y+9=0,
则它们之间的距离为d==.
练习册系列答案
相关题目
【题目】为了了解某城市居民用水量的情况,我们获得100位居民某年的月均用水量(单位:吨)通过对数据的处理,我们获得了该100位居民月均用水量的频率分布表,并绘制了频率分布直方图(部分数据隐藏)
100位居民月均用水量的频率分布表
组号 | 分组 | 频数 | 频率 |
1 | 4 | 0.04 | |
2 | 0.08 | ||
3 | 15 | ||
4 | 22 | ||
5 | |||
6 | 14 | 0.14 | |
7 | 6 | ||
8 | 4 | 0.04 | |
9 | 0.02 | ||
合 计 | 100 |
(1)确定表中与的值;
(2)求频率分布直方图中左数第4个矩形的高度;
(3)在频率分布直方图中画出频率分布折线图;
(4)我们想得到总体密度曲线,请回答我们应该怎么做?