题目内容
【题目】已知函数f(x)=2x﹣ .
(Ⅰ)若f(x)=2,求x的值;
(Ⅱ)若2tf(2t)+mf(t)≥0对于t∈[1,2]恒成立,求实数m的取值范围.
【答案】解:(Ⅰ)当x≤0时f(x)=0,
当x>0时, ,
有条件可得, ,
即22x﹣2×2x﹣1=0,解得 ,∵2x>0,∴ ,∴ .
(Ⅱ)当t∈[1,2]时, ,
即m(22t﹣1)≥﹣(24t﹣1).∵22t﹣1>0,∴m≥﹣(22t+1).
∵t∈[1,2],∴﹣(1+22t)∈[﹣17,﹣5],
故m的取值范围是[﹣5,+∞).
【解析】(I)当x≤0时得到f(x)=0而f(x)=2,所以无解;当x>0时解出f(x)=2求出x即可;(II)由 t∈[1,2]时,2tf(2t)+mf(t)≥0恒成立得到,得到f(t)= ,代入得到m的范围即可.
练习册系列答案
相关题目
【题目】某手机厂商推出一款6寸大屏手机,现对500名该手机使用者(200名女性,300名男性)进行调查,对手机进行打分,打分的频数分布表如下:
女性用户 | 分值区间 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
频数 | 20 | 40 | 80 | 50 | 10 | |
男性用户 | 分值区间 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
频数 | 45 | 75 | 90 | 60 | 30 |
(Ⅰ)完成下列频率分布直方图,并比较女性用户和男性用户评分的波动大小(不计算具体值,给出结论即可);
(Ⅱ)根据评分的不同,运用分层抽样从男性用户中抽取20名用户,在这20名用户中,从评分不低于80分的用户中任意抽取3名用户,求3名用户中评分小于90分的人数的分布列和期望.