题目内容
【题目】△ABC的内角A,B,C所对的边分别为a,b,c,向量 =(a,c), =(1﹣2cosA,2cosC﹣1),
(Ⅰ)若b=5,求a+c值;
(Ⅱ)若 ,且角A是△ABC中最大内角,求角A的大小.
【答案】解:(Ⅰ)因为: ,
所以,2sinAcosC﹣sinA=sinC﹣2sinCcosA,
可得:2sinAcosC+2sinCcosA=2sin(A+C)=sinC+sinA,
所以,sinA+sinC=2sinB,
由正弦定理得2b=a+c=10.
(Ⅱ) ,
又因为sinA+sinC=2sinB=sinA+sin(π﹣A﹣B),
则,2sinA+cosA=2,
又sin2A+cos2A=1,
所以,解得 ,
由于A是最大角,
所以, .
【解析】(Ⅰ)利用平面向量平行的性质,正弦定理,两角和的正弦函数公式,三角形内角和定理可求sinA+sinC=2sinB,由正弦定理及已知即可得解.(Ⅱ)由已知利用倍角公式,同角三角函数基本关系式可求sinB,cosB的值,可求2sinA+cosA=2,联立sin2A+cos2A=1即可解得cosA的值,结合A是最大角,即可得解A的值.
【考点精析】认真审题,首先需要了解正弦定理的定义(正弦定理:).
练习册系列答案
相关题目