题目内容
18.解下列不等式:(1)|4x2-10x-3|<3;
(2)|$\frac{3x}{{x}^{2}-4}$|≤1;
(3)|2x+1|>|5-x|;
(4)|x-x2-2|>x2-3x-4;
(5)|x-3|>|x+5|+7.
分析 (1)把原不等式化为-3<4x2-10x-3<3,即$\left\{\begin{array}{l}{{4x}^{2}-10x>0}\\{{4x}^{2}-10x-6<0}\end{array}\right.$,从而求得它的解集.
(2)把原不等式化为-1≤$\frac{3x}{x-4}$≤1,即 $\left\{\begin{array}{l}{\frac{3x}{{x}^{2}-4}≥-1}\\{\frac{3x}{{x}^{2}-4}≤1}\end{array}\right.$,从而求得它的解集.
(3)把原不等式化为 (2x+1)2>(5-x)2,即 3x2+14x-24>0,从而求得它的解集.
(4)把原不等式化为|x2-x+2|>x2-3x-4.由于 x2-x+2>0,可得x2-x+2>x2-3x-4,从而求得它的解集.
(5)由条件根据绝对值的意义,求得它的解集.
解答 解:(1)由|4x2-10x-3|<3,可得-3<4x2-10x-3<3,即$\left\{\begin{array}{l}{{4x}^{2}-10x>0}\\{{4x}^{2}-10x-6<0}\end{array}\right.$,即 $\left\{\begin{array}{l}{x<0或x>\frac{10}{4}}\\{-\frac{1}{2}<x<3}\end{array}\right.$,
∴原不等式的解集为{x|-$\frac{1}{2}$<x<0 或$\frac{5}{2}$<x<3}.
(2)由|$\frac{3x}{{x}^{2}-4}$|≤1,可得-1≤$\frac{3x}{x-4}$≤1,即 $\left\{\begin{array}{l}{\frac{3x}{{x}^{2}-4}≥-1}\\{\frac{3x}{{x}^{2}-4}≤1}\end{array}\right.$,即 $\left\{\begin{array}{l}{\frac{(x+4)(x-1)}{(x+2)(x-2)}≥0}\\{\frac{(x-4)(x+1)}{(x+2)(x-2)≥0}}\end{array}\right.$,即$\left\{\begin{array}{l}{x≤-4或-2<x≤1或x>2}\\{x<-2或-1≤x<2或x≥4}\end{array}\right.$,
∴原不等式的解集为{x|x≤-4 或-1≤x≤1或 x≥4}.
(3)由|2x+1|>|5-x|可得 (2x+1)2>(5-x)2,即 3x2+14x-24>0,
求得原不等式的解集为{x|x<$\frac{-7-\sqrt{91}}{3}$ 或x>$\frac{-7+\sqrt{91}}{3}$}.
(4)|x-x2-2|>x2-3x-4,即|x2-x+2|>x2-3x-4.由于 x2-x+2>0,
可得x2-x+2>x2-3x-4,即 2x>-6,故原不等式的解集为{x|x>-3}.
(5)|x-3|>|x+5|+7,即|x-3|-|x+5|>7.
而|x-3|-|x+5|表示数轴上的x对应点到3的距离减去它到-5的距离,而-4.5对应点到3的距离减去它到-5的距离正好等于7,
故原不等式的解集为{x|x<-4.5 }.
点评 本题主要考查绝对值不等式、分式不等式、一元二次不等式的解法,绝对值的几何意义,属于中档题.
A. | 2 | B. | 2$\sqrt{2}$ | C. | 4$\sqrt{2}$ | D. | 6 |
(1)求A-1;
(2)满足AX=A-1二阶矩阵X.
A. | $\frac{7}{2}$ | B. | $\frac{7}{4}$ | C. | $\frac{7}{8}$ | D. | $\frac{7}{16}$ |