题目内容
18.某种植物的种子发芽率是0.7,则3颗种子中恰好有2颗发芽的概率是0.441.分析 由条件利用n次独立重复实验中恰好发生k次的概率计算公式,计算求的结果.
解答 解:3颗种子中恰好有2颗发芽的概率是 ${C}_{3}^{2}$×0.72×0.3=0.441,
故答案为:0.441.
点评 本题主要考查n次独立重复实验中恰好发生k次的概率计算公式,属于基础题.
练习册系列答案
相关题目
6.一张长方形白纸,其厚度为a,面积为b,现将此纸对折(沿对边中点连线折叠)5次,这时纸的厚度和面积分别为( )
A. | $\frac{1}{32}$a,32b | B. | 32a,$\frac{1}{32}b$ | C. | 16a,$\frac{1}{32}b$ | D. | 16a,$\frac{1}{16}b$ |
13.某同学用“五点法”画函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<$\frac{π}{2}$)在某一个周期的图象时,列表并填入的部分数据如下表:
(Ⅰ)求x1,x2,x3的值及函数f(x)的表达式;
(Ⅱ)将函数f(x)的图象向左平移π个单位,可得到函数g(x)的图象,若直线y=k与函数y=f(x)g(x)的图象在[0,π]上有交点,求实数k的取值范围.
x | $\frac{2π}{3}$ | x1 | $\frac{8π}{3}$ | x2 | x3 |
ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
Asin(ωx+φ) | 0 | 2 | 0 | -2 | 0 |
(Ⅱ)将函数f(x)的图象向左平移π个单位,可得到函数g(x)的图象,若直线y=k与函数y=f(x)g(x)的图象在[0,π]上有交点,求实数k的取值范围.
13.已知m、n是不重合的直线,α、β是不重合的平面,则下列命题正确的是( )
A. | 若m?α,n∥α,则m∥n | B. | 若m∥α,m∥β,则α∥β | ||
C. | 若α∩β=n,m∥n,则m∥β | D. | 若m⊥α,m⊥β,则α∥β |