ÌâÄ¿ÄÚÈÝ
8£®Ä³¹«Ë¾²ÆÎñ²¿ºÍÐÐÕþ²¿ÐèÒªÕÐÈË£¬ÏÖÓмס¢ÒÒ¡¢±û¡¢¶¡ËÄÈËӦƸ£¬ÆäÖмס¢ÒÒÁ½È˸÷×Ô¶ÀÁ¢Ó¦Æ¸²ÆÎñ²¿£¬±û¡¢¶¡Á½È˸÷×Ô¶ÀÁ¢Ó¦Æ¸ÐÐÕþ²¿£¬ÒÑÖª¼×¡¢ÒÒÁ½È˸÷×ÔӦƸ³É¹¦µÄ¸ÅÂʾùΪ$\frac{1}{3}$£¬±û¡¢¶¡Á½È˸÷×ÔӦƸ³É¹¦µÄ¸ÅÂʾùΪ$\frac{1}{2}$£®£¨1£©Çó²ÆÎñ²¿Ó¦Æ¸³É¹¦µÄÈËÊý¶àÓÚÐÐÕþ²¿Ó¦Æ¸³É¹¦µÄÈËÊýµÄ¸ÅÂÊ£»
£¨2£©¼Ç¸Ã¹«Ë¾±»Ó¦Æ¸³É¹¦µÄ×ÜÈËÊýΪX£¬ÇóXµÄ·Ö²¼ÁкÍÆÚÍû£®
·ÖÎö £¨1£©ÓÉÒÑÖªÀûÓÃÏ໥¶ÀÁ¢Ê¼þ¸ÅÂʳ˷¨¹«Ê½ºÍ»¥³âʼþ¸ÅÂʼӷ¨¹«Ê½ÄÜÇó³ö²ÆÎñ²¿Ó¦Æ¸³É¹¦µÄÈËÊý¶àÓÚÐÐÕþ²¿Ó¦Æ¸³É¹¦µÄÈËÊýµÄ¸ÅÂÊ£®
£¨2£©ÓÉÒÑÖªµÃX¿ÉÈ¡0£¬1£¬2£¬3£¬4£¬·Ö±ðÇó³öÏàÓ¦µÄ¸ÅÂÊ£¬ÓÉ´ËÄÜÇó³öXµÄ·Ö²¼ÁкÍÆÚÍû£®
½â´ð ½â£º£¨1£©ÓÉÒÑÖªµÃ²ÆÎñ²¿Ó¦Æ¸³É¹¦µÄÈËÊý¶àÓÚÐÐÕþ²¿Ó¦Æ¸³É¹¦µÄÈËÊýµÄ¸ÅÂÊ£º
P=$\frac{1}{3}¡Á\frac{1}{2}¡Á2¡Á£¨\frac{1}{2}£©^{2}$$+\frac{1}{3}¡Á\frac{1}{3}¡Á\frac{3}{4}$=$\frac{7}{36}$£®£¨3·Ö£©
£¨2£©ÓÉÒÑÖªµÃX¿ÉÈ¡0£¬1£¬2£¬3£¬4£¬
P£¨X=0£©=$\frac{2}{3}¡Á\frac{2}{3}¡Á\frac{1}{2}¡Á\frac{1}{2}$=$\frac{4}{36}$£¬
P£¨X=1£©=${C}_{2}^{1}¡Á\frac{1}{3}¡Á\frac{2}{3}¡Á\frac{1}{2}¡Á\frac{1}{2}$+${C}_{2}^{1}¡Á\frac{2}{3}¡Á\frac{2}{3}¡Á\frac{1}{2}¡Á\frac{1}{2}$=$\frac{12}{36}$£¬
P£¨X=2£©=$\frac{1}{3}¡Á\frac{1}{3}¡Á\frac{1}{2}¡Á\frac{1}{2}$+${C}_{2}^{1}{C}_{2}^{1}¡Á\frac{1}{3}¡Á\frac{2}{3}¡Á\frac{1}{2}¡Á\frac{1}{2}$+$\frac{2}{3}¡Á\frac{2}{3}¡Á\frac{1}{2}¡Á\frac{1}{2}$=$\frac{13}{36}$£¬
P£¨X=3£©=${C}_{2}^{1}¡Á\frac{1}{3}¡Á\frac{2}{3}¡Á\frac{1}{2}¡Á\frac{1}{2}$+${C}_{2}^{1}¡Á\frac{1}{3}¡Á\frac{1}{3}¡Á\frac{1}{2}¡Á\frac{1}{2}$=$\frac{6}{36}$£®
P£¨X=4£©=$\frac{1}{3}¡Á\frac{1}{3}¡Á\frac{1}{2}¡Á\frac{1}{2}$=$\frac{1}{36}$£®
¡àXµÄ·Ö²¼ÁÐΪ
X | 0 | 1 | 2 | 3 | 4 |
P | $\frac{4}{36}$ | $\frac{12}{36}$ | $\frac{13}{36}$ | $\frac{6}{36}$ | $\frac{1}{36}$ |
µãÆÀ ±¾Ì⿼²é¸ÅÂʵÄÇ󷨣¬¿¼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁкÍÊýѧÆÚÍûµÄÇóÖ°Ç󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪעÒâÏ໥¶ÀÁ¢Ê¼þ¸ÅÂʳ˷¨¹«Ê½ºÍ»¥³âʼþ¸ÅÂʼӷ¨¹«Ê½µÄÁé»îÔËÓã®
A£® | 3 | B£® | $\frac{8}{3}$ | C£® | 4 | D£® | 5 |
A£® | 2$\sqrt{5}$ | B£® | 2$\sqrt{6}$ | C£® | 4$\sqrt{2}$ | D£® | 4$\sqrt{3}$ |