题目内容
【题目】为研究昼夜温差大小与某疾病的患病人数之间的关系,经查询得到今年上半年每月15号的昼夜温差情况与患者的人数如表:
日期 | 1月15日 | 2月15日 | 3月15日 | 4月15日 | 5月15日 | 6月15日 |
昼夜温差 | 10 | 11 | 10 | 10 | 9 | 7 |
患者人数个 | 21 | 26 | 20 | 18 | 16 | 8 |
研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.
若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y关于x的线性回归方程;
若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问中所得线性回归方程是否理想?
参考公式:,
【答案】(1)(2)不理想
【解析】
(1)利用表中的数据求出,再利用公式求出,从而求得,问题得解。
(2)将的取值分别代入线性回归方程即可判断。
(1)由数据求得,
由公式求得,
再由.
所以关于的线性回归方程为
(2)当时,;
但当时,,
所以该小组所得线性回归方程是不理想.
【题目】某蛋糕店制作并销售一款蛋糕,当天每售出个利润为元,未售出的每个亏损元.根据以往天的统计资料,得到如下需求量表,元旦这天,此蛋糕店制作了个这种蛋糕.以(单位:个, )表示这天的市场需求量. (单位:元)表示这天售出该蛋糕的利润.
需求量/个 | |||||
天数 | 10 | 20 | 30 | 25 | 15 |
(1)将表示为的函数,根据上表,求利润不少于元的概率;
(3)元旦这天,该店通过微信展示打分的方式随机抽取了名市民进行问卷调查,调查结果如下表所示,已知在购买意愿强的市民中,女性的占比为.
购买意愿强 | 购买意愿弱 | 合计 | |
女性 | 28 | ||
男性 | 22 | ||
合计 | 28 | 22 | 50 |
完善上表,并根据上表,判断是否有的把握认为市民是否购买这种蛋糕与性别有关?
附: .
0.05 | 0.025 | 0.010 | 0.005 | |
3.841 | 5.024 | 6.635 | 7.879 |
【题目】【2018山西晋城市高三上学期一模】环境问题是当今世界共同关注的问题,我国环保总局根据空气污染指数浓度,制定了空气质量标准:
空气污染指数 | ||||||
空气质量等级 | 优 | 良 | 轻度污染 | 中度污染 | 重度污染 | 严重污染 |
某市政府为了打造美丽城市,节能减排,从2010年开始考察了连续六年11月份的空气污染指数,绘制了频率分布直方图,经过分析研究,决定从2016年11月1日起在空气质量重度污染和严重污染的日子对机动车辆限号出行,即车牌尾号为单号的车辆单号出行,车牌尾号为双号的车辆双号出行(尾号是字母的,前13个视为单号,后13个视为双号),王先生有一辆车,若11月份被限行的概率为0.05.
(I)求频率分布直方图中的值(写出推理过程,直接写出答案不得分);
(II)若按分层抽样的方法,从空气质量良好与中度污染的天气中抽取6天,再从这6天中随机抽取2天,求至少有一天空气质量中度污染的概率;
(III)该市环保局为了调查汽车尾气排放对空气质量的影响,对限行两年来的11月份共60天的空气质量进行统计,其结果如下表:
根据限行前6年180天与限行后60天的数据,计算并填写以下列联表,并回答是否有的把握认为空气质量的优良与汽车尾气的排放有关.
参考数据:
参考公式:,其中.