题目内容
【题目】某校为了了解高一新生是否愿意参加军训,随机调查了80名新生,得到如下2×2列联表
愿意 | 不愿意 | 合计 | |
男 | x | 5 | M |
女 | y | z | 40 |
合计 | N | 25 | 80 |
(1)写出表中x,y,z,M,N的值,并判断是否有99.9%的把握认为愿意参加军训与性别有关;
(2)在被调查的不愿意参加军训的学生中,随机抽出3人,记这3人中男生的人数为ξ,求ξ的分布列和数学期望.
参考公式:
附:
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(1)M=40,x=35,z=20,y=20,N=55,有99.9%的把握认为愿意参加志愿者填报培训与性别有关.(2)分布列见详解,E(ξ).
【解析】
(1)根据表格中数据,即可求得x,y,z,M,N的值,再计算,结合参考表格即可作出判断;
(2)列出ξ的取值,根据古典概型概率计算公式求得分布列,再根据分布列计算数学期望即可.
(1)由表格数据可知:
M=80﹣40=40,
x=40﹣5=35,
z=25﹣5=20,
y=40﹣20=20,
N=80﹣25=55,
∵K213.09>10.828,
∴有99.9%的把握认为愿意参加志愿者填报培训与性别有关.
(2)在被调查的不愿意参加军训的学生中,随机抽出3人,
记这3人中男生的人数为ξ,则ξ的可能取值为0,1,2,3,
P(ξ=0),
P(ξ=1),
P(ξ=2),
P(ξ=3),
∴ξ的分布列为:
ξ | 0 | 1 | 2 | 3 |
P |
E(ξ).
【题目】某医科大学实习小组为研究实习地昼夜温差与患感冒人数之间的关系,分别到当地气象部门和某医院抄录了1月份至3月份每月5日、20日的昼夜温差情况与因患感冒而就诊的人数,得到如表资料:
日期 | 1月5日 | 1月20日 | 2月5日 | 2月20日 | 3月5日 | 3月20日 |
昼夜温差() | 10 | 11 | 13 | 12 | 8 | 6 |
就诊人数(人) | 22 | 25 | 29 | 26 | 16 | 12 |
该小组确定的研究方案是:先从这六组数据中随机选取4组数据求线性回归方程,再用剩余的2组数据进行检验.
(1)求剩余的2组数据中至少有一组是20日的概率;
(2)若选取的是1月20日,2月5日,2月20日,3月5日四组数据.
①请根据这四组数据,求出关于的线性回归方程(,用分数表示);
②若由线性回归方程得到的估计数据与剩余的检验数据的误差均不超过1人,则认为得到的线性回归方程是理想的,试问①中所得线性回归方程是否理想?
附参考公式:,.
【题目】改革开放以来,我国农村7亿多贫困人口摆脱贫困,贫困发生率由1978年的97.5%下降到2018年底的1.4%,创造了人类减贫史上的中国奇迹,为全球减贫事业贡献了中国智慧和中国方案.“贫困发生率”是指低于贫困线的人口占全体人口的比例.2012年至2018年我国贫困发生率的数据如下表:
年份() | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
贫困发生率(%) | 10.2 | 8.5 | 7.2 | 5.7 | 4.5 | 3.1 | 1.4 |
(1)从表中所给的7个贫困发生率数据中任选两个,求至少有一个低于5%的概率;
(2)设年份代码,利用回归方程,分析2012年至2018年贫困发生率的变化情况,并预测2019年贫困发生率.
附:回归直线的斜率和截距的最小二乘估计公式分别为:,.