题目内容

10.从含有甲乙的6名短跑运动员中任选4人参加4*100米接力,问其中甲不能跑第一棒,且乙不能跑第四棒的概率是(  )
A.$\frac{7}{40}$B.$\frac{7}{30}$C.$\frac{7}{20}$D.$\frac{7}{10}$

分析 首先计算从6人中取4人参加比赛的种数,再用排除法计算“甲不能跑第一棒,且乙不能跑第四棒的”的安排方法数目,由古典概型公式计算可得答案.

解答 解:根据题意,从6名短跑运动员中任选4人参加4*100米接力,有A64=360种安排方法,
其中其中甲跑第一棒的情况有A53=60种,乙跑第四棒的情况有A53=60种,
“甲跑第一棒”与“乙跑第四棒”都包含了“甲跑第一棒,乙跑第四棒”,此时有A42=12种情况,
则甲不能跑第一棒,且乙不能跑第四棒的安排方法有360-60-60+12=252种,
则甲不能跑第一棒,且乙不能跑第四棒的概率P=$\frac{252}{360}$=$\frac{7}{10}$;
故选:D.

点评 本题考查排列组合的运用,涉及古典概型的简单计算,关键是运用间接法求出“甲不能跑第一棒,且乙不能跑第四棒”的安排方法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网