题目内容

10.已知$\overrightarrow{a}$=(m-1,1),$\overrightarrow{b}$=(-n-1,2),其中m>0,n>0,若存在实数λ使$\overrightarrow{b}=λ\overrightarrow{a}$,则$\frac{1}{m}$+$\frac{2}{n}$的最小值是(  )
A.2$\sqrt{2}$B.4C.4$\sqrt{2}$D.8

分析 由题意和向量平行可得正数mn满足2m+n=1,整体代入可得$\frac{1}{m}$+$\frac{2}{n}$=($\frac{1}{m}$+$\frac{2}{n}$)(2m+n)=4+$\frac{n}{m}$+$\frac{4m}{n}$,由基本不等式可得.

解答 解:∵$\overrightarrow{a}$=(m-1,1),$\overrightarrow{b}$=(-n-1,2),其中m>0,n>0,若存在实数λ使$\overrightarrow{b}=λ\overrightarrow{a}$,
∴$\overrightarrow{b}$∥$\overrightarrow{a}$,∴2(m-1)=-n-1,即正数mn满足2m+n=1,
∴$\frac{1}{m}$+$\frac{2}{n}$=($\frac{1}{m}$+$\frac{2}{n}$)(2m+n)=4+$\frac{n}{m}$+$\frac{4m}{n}$≥4+2$\sqrt{\frac{n}{m}•\frac{4m}{n}}$=8,
当且仅当$\frac{n}{m}$=$\frac{4m}{n}$即n=2m时取等号,结合2m+n=1可得m=$\frac{1}{4}$且n=$\frac{1}{2}$时取等号.
故选:D.

点评 本题考查基本不等式求最值,涉及平面向量的应用和整体代入的思想,属基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网