题目内容
【题目】如图所示,三棱锥中,平面平面,平面平面,分别是和边上的点,且,,,,,,为的中点.
(1)求证:平面;
(2)求直线与平面所成角的正弦值.
【答案】(1)见证明;(2)
【解析】
(1)在中,根据余弦定理,可得,所以,即是直角三角形,又为的中点,所以为等边三角形,根据线面平行的判定定理即可证明。
(2)以点为原点,以,,所在直线分别为轴,轴,轴建系,求出,平面
法向量的坐标,计算与法向量的夹角,可得所求。
(1)平面平面,平面平面,平面平面
则平面,
又,则
因为,,,
所以,,
在中,,,
由余弦定理可得:
解得:
所以,所以是直角三角形,
又为的中点,所以
又,所以为等边三角形,
所以,所以,
又平面,平面,
所以平面.
(2)由(1)可知,以点为原点,以,,所在直线分别为轴,轴,轴建立空间直角坐标系,则,,,.
所以,,.
设为平面的法向量,则,即
设,则,,即平面的一个法向量为,
所以,
所以直线与平面所成角的正弦值为.
【题目】近年来,随着互联网技术的快速发展,共享经济覆盖的范围迅速扩张,继共享单车、共享汽车之后,共享房屋以“民宿”、“农家乐”等形式开始在很多平台上线.某创业者计划在某景区附近租赁一套农房发展成特色“农家乐”,为了确定未来发展方向,此创业者对该景区附近六家“农家乐”跟踪调查了天.得到的统计数据如下表,为收费标准(单位:元/日),为入住天数(单位:),以频率作为各自的“入住率”,收费标准与“入住率”的散点图如图
x | 50 | 100 | 150 | 200 | 300 | 400 |
t | 90 | 65 | 45 | 30 | 20 | 20 |
(1)若从以上六家“农家乐”中随机抽取两家深入调查,记为“入住率”超过的农家乐的个数,求的概率分布列;
(2)令,由散点图判断与哪个更合适于此模型(给出判断即可,不必说明理由)?并根据你的判断结果求回归方程.(结果保留一位小数)
(3)若一年按天计算,试估计收费标准为多少时,年销售额最大?(年销售额入住率收费标准)
参考数据: