题目内容

设正项等比数列{an}的前n项和为Sn,且a3=4,S2=3.
(1)求数列{an}的通项公式;
(2)令bn=(2n-1)an(n∈N*),求数列{bn}的前n项和为Tn
(1)设正项等比数列{an}的公比为q(q>),
∵a3=4,S2=3,
a1q2=4
a1+a1q=3

解得
q=2
a1=1
,或
q=-
2
3
a1=9
(舍),
an=2n-1
(2)由(1)知bn=(2n-1)an=(2n-1)•2n-1
∴Tn=1+3×2+5×22+7×23+…+(2n-3)×2n-2+(2n-1)×2n-1,①
2Tn=2+3×22+5×23+7×24+…+(2n-3)×2n-1+(2n-1)×2n,②
错位相减,①-②,得
-Tn=-1+6+23+24+25+…+2n-(2n-1)×2n
=5+
23(1-2n-2)
1-2
-(2n-1)×2n
=5-8+2n+1-n×2n+1+2n
=-3-(2n-3)•2n
∴Tn=3+(2n-3)•2n
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网