题目内容
设正项等比数列{an}的前n项和为Sn,且a3=4,S2=3.
(1)求数列{an}的通项公式;
(2)令bn=(2n-1)an(n∈N*),求数列{bn}的前n项和为Tn.
(1)求数列{an}的通项公式;
(2)令bn=(2n-1)an(n∈N*),求数列{bn}的前n项和为Tn.
(1)设正项等比数列{an}的公比为q(q>),
∵a3=4,S2=3,
∴
,
解得
,或
(舍),
∴an=2n-1.
(2)由(1)知bn=(2n-1)an=(2n-1)•2n-1,
∴Tn=1+3×2+5×22+7×23+…+(2n-3)×2n-2+(2n-1)×2n-1,①
2Tn=2+3×22+5×23+7×24+…+(2n-3)×2n-1+(2n-1)×2n,②
错位相减,①-②,得
-Tn=-1+6+23+24+25+…+2n-(2n-1)×2n
=5+
-(2n-1)×2n
=5-8+2n+1-n×2n+1+2n
=-3-(2n-3)•2n.
∴Tn=3+(2n-3)•2n.
∵a3=4,S2=3,
∴
|
解得
|
|
∴an=2n-1.
(2)由(1)知bn=(2n-1)an=(2n-1)•2n-1,
∴Tn=1+3×2+5×22+7×23+…+(2n-3)×2n-2+(2n-1)×2n-1,①
2Tn=2+3×22+5×23+7×24+…+(2n-3)×2n-1+(2n-1)×2n,②
错位相减,①-②,得
-Tn=-1+6+23+24+25+…+2n-(2n-1)×2n
=5+
23(1-2n-2) |
1-2 |
=5-8+2n+1-n×2n+1+2n
=-3-(2n-3)•2n.
∴Tn=3+(2n-3)•2n.
练习册系列答案
相关题目