题目内容
13.已知a、b、c均为正数,若a+b+c,b+c-a,c+a-b,a+b-c依次成等比数列,且公比为q,则q3+q2+q的值为( )A. | 0 | B. | 1 | C. | 3 | D. | 不能确定 |
分析 由a+b+c,b+c-a,c+a-b,a+b-c依次成等比数列,公比为q,可设a+b+c=x,由公比q,利用等比数列的通项公式表示出其余三项,三个等式相加后,由x不等于0消去x即可得到所求式子的值.
解答 解:设x=a+b+c,则b+c-a=xq,c+a-b=xq2,a+b-c=xq3,
∴xq+xq2+xq3=x(x≠0),
∴q3+q2+q=1.
故选:B.
点评 此题考查学生灵活运用等比数列的通项公式化简求值,掌握等比数列的性质,是一道基础题.解本题的关键是设a+b+c=x,利用等比数列的通项公式表示出其余各项.
练习册系列答案
相关题目
8.值域是(0,+∞)的函数是( )
A. | y=x2-x+1 | B. | y=($\frac{1}{3}$)1-x | C. | y=3${\;}^{\frac{1}{2-x}}$+1 | D. | y=log2x2 |