题目内容
【题目】如图F1、F2是椭圆C1: +y2=1与双曲线C2的公共焦点,A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是( )
A.
B.
C.
D.
【答案】D
【解析】解:设|AF1|=x,|AF2|=y,∵点A为椭圆C1: +y2=1上的点,
∴2a=4,b=1,c= ;
∴|AF1|+|AF2|=2a=4,即x+y=4;①
又四边形AF1BF2为矩形,
∴ + = ,即x2+y2=(2c)2= =12,②
由①②得: ,解得x=2﹣ ,y=2+ ,设双曲线C2的实轴长为2m,焦距为2n,
则2m=|AF2|﹣|AF1|=y﹣x=2 ,2n=2c=2 ,
∴双曲线C2的离心率e= = = .
故选D.
【题目】市某机构为了调查该市市民对我国申办年足球世界杯的态度,随机选取了位市民进行调查,调查结果统计如下:
支持 | 不支持 | 总计 | |
男性市民 | |||
女性市民 | |||
总计 |
(1)根据已知数据,把表格数据填写完整;
(2)能否在犯错误的概率不超过的前提下认为支持申办年足球世界杯与性别有关?请说明理由.
附:,其中.
【题目】为了增强消防安全意识,某中学做了一次消防知识讲座,从男生中随机抽取了50人,从女生中随机抽取了70人参加消防知识测试,统计数据得到如下的列联表:
优秀 | 非优秀 | 总计 | |
男生 | 15 | 35 | 50 |
女生 | 30 | 40 | 70 |
总计 | 45 | 75 | 120 |
(1)试判断能否有90%的把握认为消防知识的测试成绩优秀与否与性别有关;
(2)为了宣传消防安全知识,从该校测试成绩获得优秀的同学中采用分层抽样的方法,随机选出6名组成宣传小组.现从这6人中随机抽取2名到校外宣传,求到校外宣传的同学中至少有1名是男生的概率。
附:
P(K2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
【题目】某算法的程序框图如图所示,其中输入的变量x在1,2,3,…,24这24个整数中等可能随机产生
(1)分别求出按程序框图正确编程运行时输出y的值为i的概率pi(i=1,2,3);
(2)甲乙两同学依据自己对程序框图的理解,各自编程写出程序重复运行n次后,统计记录输出y的值为i(i=1,2,3)的频数,以下是甲乙所作频数统计表的部分数据.
甲的频数统计图(部分)
运行次数n | 输出y的值为1的频数 | 输出y的值为2的频数 | 输出y的值为3的频数 |
30 | 14 | 6 | 10 |
… | … | … | … |
2100 | 1027 | 376 | 697 |
乙的频数统计图(部分)
运行次数n | 输出y的值为1的频数 | 输出y的值为2的频数 | 输出y的值为3的频数 |
30 | 12 | 11 | 7 |
… | … | … | … |
2100 | 1051 | 696 | 353 |
当n=2100时,根据表中的数据,分别写出甲、乙所编程序各自输出y的值为i(i=1,2,3)的频率(用分数表示),并判断两位同学中哪一位所编程序符合要求的可能性较大;
(3)将按程序摆图正确编写的程序运行3次,求输出y的值为2的次数ξ的分布列及数学期望.