题目内容
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231434154114762.jpg)
(本题满分15分)已知m>1,直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823143415411589.gif)
椭圆
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823143415427549.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823143415443259.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823143415458205.gif)
(Ⅰ)当直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823143415474185.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823143415489215.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823143415474185.gif)
(Ⅱ)设直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823143415474185.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823143415458205.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823143415536248.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823143415552425.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823143415567437.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823143415755261.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823143415817209.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823143415833250.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823143415864204.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823143415879597.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823143415895265.gif)
(Ⅰ)解:因为直线![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823143415911192.gif)
经过
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231434159574120.jpg)
所以
,得
,
又因为
,
所以
,
故直线
的方程为
。
(Ⅱ)解:设
。
由
,消去
得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823143416129664.gif)
则由
,知
,
且有
。
由于
,
故
为
的中点,
由
,
可知![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823143416269770.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823143416285899.gif)
设
是
的中点,则
,
由题意可知![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823143416394602.gif)
即![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231434164101271.gif)
即![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823143416425486.gif)
而![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231434164411071.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823143416457669.gif)
所以![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823143416472519.gif)
即![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823143416550378.gif)
又因为
且![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823143416815254.gif)
所以
。
所以
的取值范围是
。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823143415911192.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823143415926571.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823143415942559.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231434159574120.jpg)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823143415989537.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823143416004376.gif)
又因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823143416020353.gif)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823143416035394.gif)
故直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823143415474185.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823143415879597.gif)
(Ⅱ)解:设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823143416067609.gif)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823143416098856.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823143416113187.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823143416129664.gif)
则由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823143416145826.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823143416160387.gif)
且有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823143416176771.gif)
由于
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823143416191477.gif)
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823143415817209.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823143416223255.gif)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823143416238586.gif)
可知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823143416269770.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823143416285899.gif)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823143416347327.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823143415833250.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823143416379699.gif)
由题意可知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823143416394602.gif)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231434164101271.gif)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823143416425486.gif)
而
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231434164411071.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823143416457669.gif)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823143416472519.gif)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823143416550378.gif)
又因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823143416020353.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823143416815254.gif)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823143416815395.gif)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823143415864204.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823143415895265.gif)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目