题目内容
(本题满分15分)已知m>1,直线,
椭圆,分别为椭圆的左、右焦点.
(Ⅰ)当直线过右焦点时,求直线的方程;
(Ⅱ)设直线与椭圆交于两点,,
的重心分别为.若原点在以线段
为直径的圆内,求实数的取值范围.
,
(Ⅰ)解:因为直线经过,
所以,得,
又因为,
所以,
故直线的方程为。
(Ⅱ)解:设。
由,消去得
则由,知,
且有。
由于,
故为的中点,
由,
可知
设是的中点,则,
由题意可知
即
即
而
所以
即
又因为且
所以。
所以的取值范围是。
所以,得,
又因为,
所以,
故直线的方程为。
(Ⅱ)解:设。
由,消去得
则由,知,
且有。
由于,
故为的中点,
由,
可知
设是的中点,则,
由题意可知
即
即
而
所以
即
又因为且
所以。
所以的取值范围是。
练习册系列答案
相关题目