题目内容

【题目】”是“对任意的正数 ”的( )

A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件

【答案】A

【解析】分析:根据基本不等式,我们可以判断出”?“对任意的正数x2x+≥1”对任意的正数x2x+≥1”?“a=

真假,进而根据充要条件的定义,即可得到结论.

解答:解:当“a=时,由基本不等式可得:

对任意的正数x2x+≥1”一定成立,

“a=”?“对任意的正数x2x+≥1”为真命题;

对任意的正数x2x+≥1时,可得“a≥

对任意的正数x2x+≥1”?“a=为假命题;

“a=对任意的正数x2x+≥1充分不必要条件

故选A

型】单选题
束】
9

【题目】如图是一几何体的平面展开图,其中为正方形, 分别为 的中点,在此几何体中,给出下面四个结论:①直线与直线异面;②直线与直线异面;③直线平面;④平面平面

其中一定正确的选项是( )

A. ①③ B. ②③ C. ②③④ D. ①③④

【答案】B

【解析】 如图所示:

①连接,则分别为的中点,所以,所以

所以共面,所以直线不是异面直线,所以错误;

②因为平面平面平面

所以直线与直线是异面直线,所以是正确的;

③由①知,因为平面平面,所以直线平面,所以正确;

④假设平面平面,过点分别交于点,在 上取一点,连接,所以,又,所以

时,必然平面与平面不垂直,所以不正确,故选B

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网