题目内容
【题目】一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样本,称出它们的重量(单位:克),重量分组区间为[5,15],(15,25],(25,35],(35,45],由此得到样本的重量频率分布直方图(如图).
(1)求的值;
(2)从盒子中随机抽取3个小球,其中重量在[5,15]内的小球个数为X,求X的分布列和数学期望. (以直方图中的频率作为概率).
【答案】(1);(2)分布列见解析,期望为.
【解析】试题分析:(1)由频率分布直方图知,所有小矩形面积(频率)之和为1,可求得;(2)由统计的知识,可知小球重量在内的概率为,因此随机变量,利用二项分布概率公式可计算出所有概率,从而得概率分布表,再由期望公式可计算期望.
试题解析:(1)由题意,得,解得;
(2)利用样本估计总体,该盒子中小球重量在内的概率为,
则.的可能取值为、、、,
,,
,.
的分布列为:
.(或者).
练习册系列答案
相关题目
【题目】某种植基地将编号分别为1,2,3,4,5,6的六个不同品种的马铃薯种在如图所示的
A | B | C | D | E | F |
这六块实验田上进行对比试验,要求这六块实验田分别种植不同品种的马铃薯,若种植时要求编号1,3,5的三个品种的马铃薯中至少有两个相邻,且2号品种的马铃薯不能种植在A、F这两块实验田上,则不同的种植方法有 ( )
A. 360种 B. 432种 C. 456种 D. 480种