题目内容
【题目】设为正项数列的前项和,满足.
(1)求的通项公式;
(2)若不等式对任意正整数都成立,求实数的取值范围;
(3)设(其中是自然对数的底数),求证:.
【答案】(1)(2)(3)证明见解析;
【解析】
(1)根据题中的关系式,利用得出数列是等差数列,可得通项公式;
(2)时,求出的范围,接着证明的此范围对的正整数都成立,首先由,放缩,然后结合二项式定理证明结论;
(3)根据(1)中的结论得到数列的通项公式,求出变形并放缩
,再由当时,放缩裂项相消法求和证明结论.
(1)∵,
∴,
两式相减,得,
即,
∴,
∵为正项数列,∴,
又由,解得或(舍去),
∴.
(2),即,
当时,,
解得且,
下面证明当且时,对任意正整数都成立,
当时,,
∴,
又当时,上式显然成立,
故只要证明对任意正整数都成立即可,
又,
∴实数的取值范围为.
(3)证明:由题得,
∵,
∴.
当时,
,
∴.
【题目】2020年是全面建成小康社会目标实现之年,也是全面打赢脱贫攻坚战收官之年.某乡镇在2014年通过精准识别确定建档立卡的贫困户共有500户,结合当地实际情况采取多项精准扶贫措施,每年新脱贫户数如下表
年份 | 2015 | 2016 | 2017 | 2018 | 2019 |
年份代码 | 1 | 2 | 3 | 4 | 5 |
脱贫户数 | 55 | 68 | 80 | 92 | 100 |
(1)根据2015-2019年的数据,求出关于的线性回归方程,并预测到2020年底该乡镇500户贫困户是否能全部脱贫;
(2)2019年的新脱贫户中有20户五保户,20户低保户,60户扶贫户.该乡镇某干部打算按照分层抽样的方法对2019年新脱贫户中的5户进行回访,了解生产生活、帮扶工作开展情况.为防止这些脱贫户再度返贫,随机抽取这5户中的2户进行每月跟踪帮扶,求抽取的2户不都是扶贫户的概率.
参考公式:,
【题目】某中学举行“新冠肺炎”防控知识闭卷考试比赛,总分获得一等奖、二等奖、三等奖的代表队人数情况如表,其中一等奖代表队比三等奖代表队多10人.该校政教处为使颁奖仪式有序进行,气氛活跃,在颁奖过程中穿插抽奖活动.并用分层抽样的方法从三个代表队中共抽取16人在前排就坐,其中二等奖代表队有5人(同队内男女生仍采用分层抽样)
名次 性别 | 一等奖 代表队 | 二等奖 代表队 | 三等奖 代表队 |
男生 | ? | 30 | ◎ |
女生 | 30 | 20 | 30 |
(1)从前排就坐的一等奖代表队中随机抽取3人上台领奖,用X表示女生上台领奖的人数,求X的分布列和数学期望E(X).
(2)抽奖活动中,代表队员通过操作按键,使电脑自动产生[﹣2,2]内的两个均匀随机数x,y,随后电脑自动运行如图所示的程序框图的相应程序.若电脑显示“中奖”,则代表队员获相应奖品;若电脑显示“谢谢”,则不中奖.求代表队队员获得奖品的概率.