题目内容
【题目】如果函数f(x)=x2+2(a﹣1)x+2在(﹣∞,4]上是减函数,那么实数a取值范围是( )
A.a≤﹣3
B.a≥﹣3
C.a≤5
D.a≥5
【答案】A
【解析】解:∵f(x)=x2+2(a﹣1)x+2=(x+a﹣1)2+2﹣(a﹣1)2
其对称轴为:x=1﹣a
∵函数f(x)=x2+2(a﹣1)x+2在(﹣∞,4]上是减函数
∴1﹣a≥4
∴a≤﹣3
故选A
先用配方法将二次函数变形,求出其对称轴,再由“在(﹣∞,4]上是减函数”,知对称轴必须在区间的右侧,求解即可得到结果.
练习册系列答案
相关题目